Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited

Paleobiology ◽  
2001 ◽  
Vol 27 (4) ◽  
pp. 751-767 ◽  
Author(s):  
Sean R. Connolly ◽  
Arnold I. Miller

The estimation and interpretation of temporal patterns in origination and extinction rates is a major goal of paleobiology. However, the possibility of coincident variation in the quality and completeness of the fossil record makes the identification of such patterns particularly difficult. Previously, Nichols and Pollock (1983) proposed that capture-mark-recapture (CMR) models be adapted to address this problem. These models can be used to estimate both sampling and turnover rates, reducing the risk of confounding the two quantities. Since that time, theoretical advances have made possible the application of these tools to a much broader range of problems. This paper reviews those advances likely to be of greatest relevance in paleobiological studies. They include (1) joint estimation of per-taxon origination and extinction rates, (2) modeling sampling or turnover rates as explicit functions of causal variables, (3) ranking of alternative models according to their fit to the data, and (4) estimation of parameter values using multiple models. These are illustrated by application to an Ordovician database of benthic marine genera from key higher taxa. Robustness of these methods to violation of assumptions likely to be suspect in paleobiological studies further suggests that these models can make an important contribution to the quantitative study of macroevolutionary dynamics.

Paleobiology ◽  
1975 ◽  
Vol 1 (1) ◽  
pp. 82-96 ◽  
Author(s):  
David M. Raup

As Van Valen has demonstrated, the taxonomic survivorship curve is a valuable means of investigating extinction rates in the fossil record. He suggested that within an adaptive zone, related taxa display stochastically constant and equal extinction rates. Such a condition is evidenced by straight survivorship curves for species and higher taxa. Van Valen's methods of survivorship analysis can be improved upon and several suggestions are presented. With proper manipulation of data, it is possible to pool the information from extinct and living taxa to produce a single survivorship curve and therefore a single estimate of extinction rate. If extinction rate is constant at the species level (producing a straight survivorship curve), higher taxa in the same group should be expected to have convex survivorship curves. The constancy of extinction rates (here termed Van Valen's Law) can and should be tested rigorously. Several methods are available, of which the Total Life method of Epstein is particularly effective.


1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150225 ◽  
Author(s):  
Daniele Silvestro ◽  
Alexander Zizka ◽  
Christine D. Bacon ◽  
Borja Cascales-Miñana ◽  
Nicolas Salamin ◽  
...  

Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal–extinction–sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography.


2017 ◽  
Author(s):  
Eric Lewitus ◽  
Hélène Morlon

AbstractUnderstanding the relative influence of various abiotic and biotic variables on diversification dynamics is a major goal of macroevolutionary studies. Recently, phylogenetic approaches have been developed that make it possible to estimate the role of various environmental variables on diversification using time-calibrated species trees, paleoenvironmental data, and maximum-likelihood techniques. These approaches have been effectively employed to estimate how speciation and extinction rates vary with key abiotic variables, such as temperature and sea level, and we can anticipate that they will be increasingly used in the future. Here we compile a series of biotic and abiotic paleodatasets that can be used as explanatory variables in these models and use simulations to assess the statistical properties of the approach when applied to these paleodatasets. We demonstrate that environment-dependent models perform well in recovering environment-dependent speciation and extinction parameters, as well as in correctly identifying the simulated environmental model when speciation isenvironment-dependent. We explore how the strength of the environment-dependency, tree size, missing taxa, and characteristics of the paleoenvironmental curves influence the performance of the models. Finally, using these models, we infer environment-dependent diversification in three empirical phylogenies: temperature-dependence in Cetacea,δ13C-dependence in Ruminantia, andCO2-dependence in Portulacaceae. We illustrate how to evaluate the relative importance of abiotic and biotic variables in these three clades and interpret these results in light of macroevolutionary hypotheses for mammals and plants. Given the important role paleoenvironments are presumed to have played in species evolution, our statistical assessment of how environment-dependent models behave is crucial for their utility in macroevolutionary analysis.


Paleobiology ◽  
2018 ◽  
Vol 44 (3) ◽  
pp. 368-384 ◽  
Author(s):  
Roy E. Plotnick ◽  
Peter Wagner

AbstractCertain taxa are noticeably common within collections, widely distributed, and frequently long-lived. We have examined these dominant genera as compared with rarer genera, with a focus on their temporal histories. Using occurrence data from the Paleobiology Database, we determined which genera belonging to six target groups ranked among the most common within each of 49 temporal bins based on occurrences. The turnover among these dominant taxa from bin to bin was then determined for each of these groups, and all six groups when pooled. Although dominant genera are only a small fraction of all genera, the patterns of turnover mimic those seen in much larger compilations of total biodiversity. We also found that differences in patterns of turnover at the top ranks among the higher taxa reflect previously documented comparison of overall turnover among these classes. Both dominant and nondominant genera exhibit, on average, symmetrical patterns of rise and fall between first and last appearances. Dominant genera rarely begin at high ranks, but nevertheless tend to be more common when they first appear than nondominant genera. Moreover, dominant genera rarely are in the top 20 when they last appear, but still typically occupy more localities than nondominant genera occupy in their last interval. The mechanism(s) that produce dominant genera remain unclear. Nearly half of dominant genera are the type genus of a family or subfamily. This is consistent with a simple model of morphological and phylogenetic diversification and sampling.


Author(s):  
Paul B. Wignall

Despite the less-than-perfect nature of the fossil record, it still provides a unique window on the history of life, and reveals that there have been dramatic fluctuations in extinction intensities since complex life evolved around 600 million years ago. ‘Extinction in the past’ considers Jack Sepkoski’s database compiled in the 1980s, and his series of highly informative charts showing both diversity and extinction rates since the start of the Cambrian Period 541 million years ago. The calculation of extinction rates and the improved dating of extinction events are discussed, along with the extinction trends that can be observed. Fossils also provide valuable evidence on the nature of selection during extinction.


1999 ◽  
Vol 9 ◽  
pp. 309-318
Author(s):  
Kaustuv Roy

Change has been the rule in the history of life. Mammals today dominate the terrestrial habitats where dinosaurs once held sway. In modern oceans, ecologists can study many species of arthropods, but trilobites are long gone. Using data from the fossil record, David Raup estimated that only about one in a thousand species that ever lived on this planet is still alive today (Raup, 1991). On the other hand, the number of species and higher taxa has increased steadily over geologic time. Thus the history of life is essentially a history of turnover of species, lineages and higher taxa over time.


Paleobiology ◽  
1987 ◽  
Vol 13 (4) ◽  
pp. 465-478 ◽  
Author(s):  
James F. Quinn

Periodicity has recently been reported in the extinction rates of fossil marine families since the Permian. The analysis used appears particularly sensitive to parameter estimation techniques, particularly in the definition of mass extinctions. It also fails to incorporate autocorrelation in the fossil record into its null hypothesis and rests on an inappropriate a posteriori comparison to the null hypothesis. An alternative analysis, examining the time-lags between periods of high extinction rates, produces no evidence of a cycle.


Science ◽  
1991 ◽  
Vol 252 (5014) ◽  
pp. 1831-1833 ◽  
Author(s):  
D. JABLONSKI ◽  
D. J. BOTTJER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document